Respuesta :
Answer:
- b) -6
------------------------
Find the value of the function at the endpoints of the given interval
- x = - 2 ⇒ y = 4(1/2)⁻² = 4(2)² = 4(4) = 16
- x = 0 ⇒ y = 4(1/2)⁰ = 4(1) = 4
Average rate of change is
- Change in y / change in x =
- (4 - 16)/(0 - (-2)) =
- - 12 / 2 =
- - 6
Correct choice is B.
Answer:
b) -6
Step-by-step explanation:
The average rate of change of function f(x) over the interval a ≤ x ≤ b is given by:
[tex]\dfrac{f(b)-f(a)}{b-a}[/tex]
Given the interval is [-2, 0]:
- a = -2
- b = 0
Substitute the endpoints of the interval into the function and solve:
[tex]\begin{aligned}x=-2 \implies f(-2)&=4\left(\dfrac{1}{2}\right)^{-2}\\& = 4(4)\\&=16\end{aligned}[/tex]
[tex]\begin{aligned}x=0 \implies f(0)&=4\left(\dfrac{1}{2}\right)^{0}\\& = 4(1)\\&=4\end{aligned}[/tex]
Therefore:
[tex]\begin{aligned}\implies\dfrac{f(b)-f(a)}{b-a}&=\dfrac{f(0)-f(-2)}{0-(-2)}\\\\&=\dfrac{4-16}{0+2}\\\\&=\dfrac{-12}{2}\\\\&=-6\end{aligned}[/tex]