Respuesta :

he simplest form of quadratic equation 6y² + 5y - 4  is y = 0.5 or y = −1.33333 or in fraction y = 6 / 12 or y = −16/12.

How to solve a quadratic equation using the Quadratic Formula.

  • Write the quadratic equation in standard form, ax² + bx + c = 0. Identify the values of a, b, c.
  • Write the Quadratic Formula. Then substitute in the values of a, b, c.
  • Simplify.
  • Check the solutions.

6y² + 5y - 4

using the Quadratic Formula where a = 6, b = 5, and c = -4

y =−b±(√b2−4ac) / (√2a)

y =−5±(√5²−4(6)(−4)) / √(2(6))

y =−5±(√25−(−96)) / √12

y =−5± (√121 / √12

The discriminant b²−4ac>0. So, there are two real roots.

Simplify the radical:

y = (-5 ± 11) /12

y = 6/12  y =16/12

which becomes

y = 0.5

y = −1.33333

Hence, the simplest form of quadratic equation 6y² + 5y - 4  is y = 0.5 or y = −1.33333.

To know more about quadratic equations check the given link below:

https://brainly.com/question/1214333

#SPJ1