A cylinder and a cone have the same diameter: 8 inches. The height of the cylinder is 9 inches. The height of the cone is 18 inches.

Use π = 3.14.

What is the relationship between the volume of this cylinder and this cone? Explain your answer by determining the volume of each and comparing them. Show all your work.

Respuesta :

The cone is 2 pie r. that means that the dimaeter is 8 pie

8 pie times 18 =  144

cylinder is 9x8= 72

i think

hope this helps

and you have to subtract cone from cylinder
[tex]\bf \begin{array}{llll} \textit{volume of a cylinder}=V_{cy}=\pi r^2 h \\\\ \textit{volume of a cone}=V_{cn}=\frac{\pi r^2 h}{3} \end{array}\qquad \begin{cases} r=radius=\frac{diameter}{2}\\\ h=height \end{cases} \\\\\\  \\\\ V_{cy}=\pi r^2 h\quad \begin{cases} r=\frac{diameter}{2}=\frac{8}{2}=4 \\\\ h=9 \end{cases}\implies V_{cy}=\pi\cdot 4^2\cdot 9 \\\\\\ V_{cn}=\frac{\pi r^2 h}{3}\qquad \begin{cases} r=\frac{diameter}{2}=\frac{8}{2}=4 \\\\ h=18 \end{cases}\implies V_{cn}=\frac{\pi \cdot 4^2\cdot 18}{3} [/tex]

[tex]\bf V_{cn}=\pi \cdot 4^2\cdot 6 \\\\ -----------------------------\\\\ \textit{their relationship will be }\cfrac{V_{cy}}{V_{cn}}\implies \cfrac{\pi\cdot 4^2\cdot 9}{\pi \cdot 4^2\cdot 6} \\\\ \cfrac{9}{6}\implies \cfrac{3}{2}[/tex]