We are interested in testing whether or not a coin is balanced based on the number of heads Y on 36 tosses of the coin. (H0 : p = .5 versus Ha : p 7= .5). If we use the rejection region |y − 18| ≥ 4, what is: a) the value of α?; b) the value of β if p = .7?

Respuesta :

(a) P( Type -I error) = P (rejecting [tex]H_0[/tex] |  when  [tex]H_0[/tex] is true )

(b)  P( Type -II error)= P(not rejecting  [tex]H_0[/tex] |  when  [tex]H_0[/tex] is false )

Given,

In the question:

We are interested in testing whether or not a coin is balanced based on the number of heads Y on 36 tosses of the coin.

To find the:

a) the value of α

b) the value of β if p = .7

Now, According to the question:

Hypothesis Testing:

The hypothesis testing evaluates two mutually exclusive statements about the population parameters to determine which statement is correct among them. There are two types of error :

1. Type -I

2. Type -II

The data is given as:

X ~ Bin(36, p)

[tex]H_0:p = 0.5\\\\H_1:p \neq 0.5[/tex]

(a) P( Type -I error) = P (rejecting [tex]H_0[/tex] |  when  [tex]H_0[/tex] is true )

                               = P(|X- 18| [tex]\geq[/tex] 4 ; p = 0.5)

                               = 1 - {P(14 < X < 22)}

                               = 1 - {P(X < 22) - P(X < 14)}

                                = 1 -  {P(X ≤ 21) - P(X ≤ 13)}

                                = 1 - {0.87851 - 0.066249}

                                = 0.18774

(b)  P( Type -II error)= P(not rejecting  [tex]H_0[/tex] |  when  [tex]H_0[/tex] is false )

                                  = P(|X- 18| [tex]>[/tex] 4 ; p = 0.7)

                                  = P(14< X < 22)

                                  =  P(X < 22) - P(X < 14)

                                  =  P(X ≤ 21) - P(X ≤ 13)

                                  = 0.091662 - 0.018322

                                  = 0.07334

Learn more about Hypothesis Testing at:

https://brainly.com/question/16547400

#SPJ4