sketch the region of integration for the integral z 3 0 z 9 9x2 z 9y 0 f(x, y, z) dz dy dx. rewrite this integral as an equivalent iterated integral in three of the five possible other orders

Respuesta :

The integral that is an equivalent iterated integral in three of the five possible other orders is

I= [tex]\int\limits^9_0[/tex]   [tex]\int\limits^{9-z}_0[/tex][tex]\int\limits^3_{\sqrt{9-y}[/tex]  f(x, y, z)dzdydx

What is meant by integration?

An integral in mathematics assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that come from merging infinitesimal data. The process of determining integrals is known as integration.

Consider the integral,

I=  [tex]\int\limits^3_0[/tex]   [tex]\int\limits^9_{9-x^{2}}[/tex]  [tex]\int\limits^{9-y}_0[/tex]f(x, y, z)dzdydx

This implies that the solid is bounded by

0≤z≤9-y

9-x²≤y≤9

0≤x≤3

Therefore, y+z=9, z=0

y=9-x², y=9

x=0, x=3

Now, the region is given by,

y=9-x², y=9, x=3, x=0

The shaded region is the required region of the figure region.

For the next integral,

√9-y≤x≤3

0≤y≤9

I= [tex]\int\limits^9_0[/tex]  [tex]\int\limits^3_{\sqrt{9-y}[/tex]  [tex]\int\limits^{9-y}_0[/tex]f(x, y, z)dzdydx

Here we have,

y+z =9, z=0

y=9-x², y=9

x=0, x=3

So, √9-y≤x≤3

The projection on the yz plane is,

y+z=0, z=0

y=9

0≤z≤9-y

0≤y≤9

I= [tex]\int\limits^9_0[/tex]   [tex]\int\limits^{9-y}_0[/tex][tex]\int\limits^3_{\sqrt{9-y}[/tex] f(x, y, z)dzdydx

Again, 0≤y≤9-z

0≤z≤9

I= [tex]\int\limits^9_0[/tex]   [tex]\int\limits^{9-z}_0[/tex][tex]\int\limits^3_{\sqrt{9-y}[/tex]  f(x, y, z)dzdydx

To know more about integration, visit:

https://brainly.com/question/18125359

#SPJ4

Ver imagen NikitaPatel213
Ver imagen NikitaPatel213