Answer:
a. c = 0.1739 {m}/{s^2}
b. v(40.0 s ) = 1.64 \frac{m}{s}
Explanation:
So, the equation for the speed is:
v(t) = v_i - c tv(t)=v
i
−ct
as we know that the initial speed is
v_i = 8.2 \frac{m}{s}v
i
=8.2
s
m
and the speed at t=18.4 s is
v(18.4 s ) = 8.2 \frac{m}{s}- c 18.4 s = 5.00 \frac{m}{s}v(18.4s)=8.2
s
m
−c18.4s=5.00
s
m
Now, we can work it a little:
- c 18.4 s = 5.00 \frac{m}{s} - 8.2 \frac{m}{s}−c18.4s=5.00
s
m
−8.2
s
m
- c 18.4 s = -3.20 \frac{m}{s}−c18.4s=−3.20
s
m
- c 18.4 s = -3.20 \frac{m}{s}−c18.4s=−3.20
s
m
c = \frac{ -3.20 \frac{m}{s} }{ - 18.4 s }c =
−18.4s
−3.20
s
m
c = 0.1739 \frac{m}{s^2} c = 0.1739
s
2
m
So, at t=40.0 s the speed will be:
v(40.0 s ) = 8.2 \frac{m}{s}- 0.1739 \frac{m}{s^2} * 40.0 sv(40.0s)=8.2
s
m
−0.1739
s
2
m
∗40.0s
v(40.0 s ) = 8.2 \frac{m}{s}- 6.96 \frac{m}{s}v(40.0s)=8.2
s
m
−6.96
s
m
v(40.0 s ) = 1.64 \frac{m}{s}