Answer:
[tex]y=\dfrac{1}{18}x-16[/tex]
Step-by-step explanation:
[tex]\boxed{\begin{minipage}{4.4cm}\underline{Slope Formula}\\\\Slope $(m)=\dfrac{y_2-y_1}{x_2-x_1}$\\\\where $(x_1,y_1)$ and $(x_2,y_2)$ \\are two points on the line.\\\end{minipage}}[/tex]
Given points:
Substitute the given points into the slope formula to find the slope of the line:
[tex]\implies \textsf{Slope}\;(m)=\dfrac{-15-(-16)}{18-0}=\dfrac{1}{18}[/tex]
[tex]\boxed{\begin{minipage}{6.3 cm}\underline{Slope-intercept form of a linear equation}\\\\$y=mx+b$\\\\where:\\ \phantom{ww}$\bullet$ $m$ is the slope. \\ \phantom{ww}$\bullet$ $b$ is the $y$-intercept.\\\end{minipage}}[/tex]
The y-intercept is the value of y when x = 0.
Therefore, from the given point (0, -16), the y-intercept of the line is -16.
Finally, substitute the found slope and y-intercept into the formula:
[tex]\implies y=\dfrac{1}{18}x-16[/tex]