Respuesta :

Answer:  x = 6/5 ; or, write as:  "1  1/5" ; or,write as:  "1.2"  ;

               x = 
 39/37 = 1  2/37  = 1.0540540540540541 .
__________________________________________________
Explanation:
__________________________________________________
Given:

9|9
8x|=2x+3 ;  Solve for "x" ;
_________________________________________
DIvide EACH side of the equation by "9" ;
_________________________________________
{ 9|9−8x| } / 9  =  { 2x + 3 } / 9 ;
_________________________________________
to get:
_________________________________
   |9−8x| = (2x + 3) / 9 ;
_________________________________
Given the "absolute value" on the left-hand side; we have 
 "Case 1" and "Case 2" scenarios:
__________________________________
 Case 1:
________________________________
      9 − 8x =  (2x+ 3) / 9 ; 

↔   -8x + 9 =  (2x+ 3) / 9 ;
________________________________
 Case 2:
________________________________
 - (9 − 8x) =  -9 + 8x = 8x − 9 ;

    8x − 9 =  (2x + 3) / 9
________________________________
Let us start with "Case 1" :
________________________________
   -8x + 9 =  (2x + 3) / 9 ;

  → 9*(-8x + 9) = 2x + 3 ;
   
  → -72x + 81  =  2x + 3 ;
 
  → Subtract "81" ; and "2x" from EACH side of the equation ;
___________________________________________________
  →  -72x + 81 − 81 − 2x  =  2x + 3 − 81 − 2x ;
___________________________________________________
to get:   -74x = -78 ;
__________________________________________________ 
     Divide EACH side of the equation by "-74" ; to isolate "x" on one side of the equation; and to solve for "x" ;
___________________________________________________
         -74x / -74  =  -78/-74 ; 
___________________________________________________
              x = 78/74 = 39/37 = 1  2/37 ; or, 1.0540540540540541 .
_____________________________________________________
Now, let's continue with:  "Case 2" :
___________________________________
  8x − 9 =  (2x + 3) / 9 ;

     →  9*(8x − 9) = 2x + 3 ; 

                →  72x − 81 = 2x + 3 ;
___________________________________________________
Subtract "2x" ; and add "81" ; to BOTH sides of the equation:
___________________________________________________
                →  72x − 81 − 2x + 81 = 2x + 3  2x + 81 ;
___________________________________________________
to get:         →   70x  =   84 ;
___________________________________________________
        Divide EACH side of the equation by "70" ; to isolate "x" on one side of the equation; and to solve for "x" ;
________________________________________________
                  →    70x / 70 =  84 / 70 ;
________________________________________________
                  →    x = 6/5 =  1  1/5 = 1.2
________________________________________________

³⁹/₃₇ and ⁶/₅

Further explanation

For any real number x, the absolute value of x is denoted by | x | and

[tex]\boxed{ \ |x| = \left \{ {{x, \  x \geq 0 } \atop {-x, \ x < 0}} \right. \ }[/tex]

Our case is given by:

[tex]\boxed{ \ 9|9 - 8x| = 2x + 3 \ }[/tex]

Part-1

[tex]\boxed{ \ 9(9 - 8x) = 2x + 3 \ }[/tex]

[tex]\boxed{ \ 81 - 72x = 2x + 3 \ }[/tex]

[tex]\boxed{ \ - 2x - 72x = 3 - 81 \ }[/tex]

[tex]\boxed{ \ - 74x = - 78 \ }[/tex]

[tex]\boxed{ \ x = \frac{-78}{-74} \rightarrow \frac{divided \ by \ (-2)}{divided \ by \ (-2)} \rightarrow \boxed{ \ x = \frac{39}{37} \ } \ }[/tex]

Part-2

[tex]\boxed{ \ - 9(9 - 8x) = 2x + 3 \ }[/tex]

[tex]\boxed{ \ - 81 + 72x = 2x + 3 \ }[/tex]

[tex]\boxed{ \ 72x - 2x = 3 + 81 \ }[/tex]

[tex]\boxed{ \ 70x = 84 \ }[/tex]

[tex]\boxed{ \ x = \frac{84}{70} \rightarrow \frac{divided \ by \ 14}{divided \ by \ 14} \rightarrow \boxed{ \ x = \frac{6}{5} \ } \ }[/tex]

Thus, the solution is [tex]\boxed{ \ x = \frac{39}{37} \ or \ x = \frac{6}{5}. \ }[/tex]

Learn more

  1. A linear programming problem https://brainly.com/question/3799248  
  2. Does Marcus pay tax? https://brainly.com/question/11018983
  3. About complex numbers https://brainly.com/question/1658190

Keywords: solve the equation, the absolute value, check for extraneous solutions, 9|9 - 8x| = 2x + 3, the solution