Respuesta :
[tex](a+b)^n=\displaystyle\sum_{k=0}^n\binom nka^{n-k}b^k[/tex]
where [tex]\dbinom nk=\dfrac{n!}{k!(n-k)!}[/tex]. The third term of the expansion occurs when [tex]k=2[/tex].
So the third term of the expansion of [tex](3x^2+2y^3)^4[/tex] is
[tex]\dbinom42(3x^2)^{4-2}(2y^3)^2=6(3^2x^4)(4y^6)=216x^4y^6[/tex]
The coefficient is 216.
where [tex]\dbinom nk=\dfrac{n!}{k!(n-k)!}[/tex]. The third term of the expansion occurs when [tex]k=2[/tex].
So the third term of the expansion of [tex](3x^2+2y^3)^4[/tex] is
[tex]\dbinom42(3x^2)^{4-2}(2y^3)^2=6(3^2x^4)(4y^6)=216x^4y^6[/tex]
The coefficient is 216.
Answer;
-The coefficient of the third term in the expansion of the binomial
(3x^2 +2y^3)^4 is 216.
Solution;
Expand the binomial (3x² + 2y³)^4
Coefficients for expansion to power 4 are; 1, 4, 6, 4, 1
Thus; (3x² + 2y³)^4
=1(3x²)^0(2y³)^4 + 4 (3x²)^1(2y³)³ + 6 (3x²)² (2y³)² + 4 (3x²)³(2y³) + 1(3x²)^4(2y³)^0
=81 x^8 +216 x^6 y^3 +216 x^4 y^6 +96 x^2 y^9 +16 y^12
The third term is 216 x^4 y^6.
The coefficient is 216.