Respuesta :

The equivalent value of n * sqrt (x^m) can be written in exponent this would yield to n (x^m) ^ 1/ 2. This is raised to the power of one-half because its equivalence is a square root. A radical expression can be expressed thru radical and exponents.

Answer:

The given expression  [tex]\sqrt[n]{x^m}[/tex] acn be rewrite as [tex](x)^{\times \frac{m}{n}}[/tex]

Step-by-step explanation:

Given : [tex]\sqrt[n]{x^m}[/tex]

We have to rewrite the given expression.

Consider the given expression   [tex]\sqrt[n]{x^m}[/tex]

Using property of exponent  [tex]\sqrt[n]{x} =x^{\frac{1}{n}}[/tex]

We have,

[tex]\sqrt[n]{x^m}=(x^m)^{\frac{1}{n}}[/tex]

Again using property of exponents,[tex](x^a)^b=x^{ab}[/tex]

We have ,

[tex](x^m)^{\frac{1}{n}}=(x)^{m\times \frac{1}{n}}[/tex]

On simplifying, we get,

[tex](x)^{m\times \frac{1}{n}}=(x)^{\times \frac{m}{n}}[/tex]

Thus, the given expression  [tex]\sqrt[n]{x^m}[/tex] acn be rewrite as [tex](x)^{\times \frac{m}{n}}[/tex]