Respuesta :
[tex]\dfrac{13\pi}4\equiv\dfrac\pi4\mod2\pi[/tex]
Or, put another way, since [tex]\dfrac{13\pi}4=2\pi+\dfrac\pi4[/tex], it follows that [tex]\dfrac\pi4[/tex] is an equivalent angle.
Or, put another way, since [tex]\dfrac{13\pi}4=2\pi+\dfrac\pi4[/tex], it follows that [tex]\dfrac\pi4[/tex] is an equivalent angle.
Answer:
Step-by-step explanation:
Given is an angle [tex]\frac{13\pi}{4}[/tex]
We know that there are 2pi radians in each circle
Hence after crossing 2pi radians, the values repeat
[tex]\frac{13\pi}{4}=2\pi+\frac{5\pi}{4}[/tex]
Hence equivalent angle is
[tex]\frac{5\pi}{4}[/tex]
i.e. in the III quadrant making pi/4 with negative x axis.