Answer:
Part 1: 5
Part 2: [tex]13t^2+17[/tex]
Part 3:[tex]12n^3+15n^2[/tex]
Part 4:9(2s-7)
Part 5: [tex]25x^6-4[/tex]
Part 6: [tex](x^2+12x+35)[/tex]
Part 7: [tex]4z^2-12z+9[/tex]
Step-by-step explanation:
Part 1: we have to find the degree of monomial [tex]6p^3q^2[/tex]
The degree of a polynomial is the highest degree of its monomials (individual terms) with non-zero coefficients.
The degree of monomial= 3+2=5
Option c is correct.
Part 2: simplify [tex](7t^2+9) + (6t^2+8)[/tex]
[tex](7t^2+9) + (6t^2+8)[/tex]
[tex](7t^2+6t^2)+(9+8)[/tex]
[tex]13t^2+17[/tex]
Option b is correct.
Part 3: simplify [tex]3n(4n^2+5n)[/tex]
[tex]3n(4n^2+5n)[/tex]
By distributive property
[tex]12n^3+15n^2[/tex]
Option a is correct.
Part 4: . factor 18s-63
18s-63
Taking 9 common from both terms
9(2s-7)
Option d is correct.
Part 5: simpler form of [tex](5x^3+2)(5x^3-2)[/tex]
[tex](a-b)(a+b)=a^2-b^2[/tex]
[tex](5x^3+2)(5x^3-2)=(5x^3)^2-2^2=25x^6-4[/tex]
Option d is correct.
Part 6: simplify (x+7)(x+5)
[tex](x+7)(x+5)=(x^2+5x+7x+35)=(x^2+12x+35)[/tex]
Option a is correct.
Part 7: simplify [tex](2z-3)^2[/tex]
[tex](a-b)^2=a^2+b^2-2ab[/tex]
[tex](2z-3)^2=(4z^2+9-2(2z)(3)=4z^2-12z+9[/tex]
Option d is correct.