Respuesta :
Data:
Tension = Centripetal Force = ? (Newton)
m (mass) = 1.50 Kg
s (speed) = 9.78 m/s
R (radius) = 0.520 m (The piece of this rope with the ball tied in circular motion forms the circular radius).
Formula:
[tex] F_{centripetal\:force} = \frac{m*s^2}{R} [/tex]
Solving:
[tex] F_{centripetal\:force} = \frac{m*s^2}{R} [/tex]
[tex]F_{centripetal\:force} = \frac{1.50*9.78^2}{0.520}[/tex]
[tex]F_{centripetal\:force} = \frac{1.50*95.6484}{0.520}[/tex]
[tex]F_{centripetal\:force} = \frac{143.4726}{0.520}[/tex]
[tex]F_{centripetal\:force} = 275.9088... \to\:\boxed{\boxed{F_{centripetal\:force} \approx 276\:N}}\end{array}}\qquad\quad\checkmark[/tex]
Answer:
The tension in the string is 276 N
Tension = Centripetal Force = ? (Newton)
m (mass) = 1.50 Kg
s (speed) = 9.78 m/s
R (radius) = 0.520 m (The piece of this rope with the ball tied in circular motion forms the circular radius).
Formula:
[tex] F_{centripetal\:force} = \frac{m*s^2}{R} [/tex]
Solving:
[tex] F_{centripetal\:force} = \frac{m*s^2}{R} [/tex]
[tex]F_{centripetal\:force} = \frac{1.50*9.78^2}{0.520}[/tex]
[tex]F_{centripetal\:force} = \frac{1.50*95.6484}{0.520}[/tex]
[tex]F_{centripetal\:force} = \frac{143.4726}{0.520}[/tex]
[tex]F_{centripetal\:force} = 275.9088... \to\:\boxed{\boxed{F_{centripetal\:force} \approx 276\:N}}\end{array}}\qquad\quad\checkmark[/tex]
Answer:
The tension in the string is 276 N
Answer:
The tension in the string is 276 N.
Explanation:
It is given that,
Mass of the ball, m = 1.5 kg
Length of the meter stick, r = 0.52 m
Velocity of the ball, v = 9.78 m/s
The tension acting in the string is balanced by the centripetal force acting on it. Its formula is given by :
[tex]F_c=\dfrac{mv^2}{r}[/tex]
[tex]F_c=\dfrac{1.5\ kg\times (9.78\ m/s)^2}{0.52\ m}[/tex]
[tex]F_c=275.90\ N[/tex]
or
[tex]F_c=276\ N[/tex]
So, the tension in the string is 276 N. Hence, this is the required solution.