Respuesta :

lukyo
If you're using the app, try seeing this answer through your browser:  https://brainly.com/question/2978356

——————————

Eliminate the parameter from the parametric equations:

[tex]\left\{ \begin{array}{l} \mathtt{x=3\,cos\,t}\\ \mathtt{y=3\,sin\,t} \end{array} \right.\qquad\qquad\mathtt{t\in\mathbb{R}}[/tex]

The key is trying to find a relation between  x  and  y, so you can get rid of that parameter  t. See what happens if you square both equations:

[tex]\left\{ \begin{array}{l} \mathtt{x^2=(3\,cos\,t)^2}\\ \mathtt{y^2=(3\,sin\,t)^2} \end{array} \right.\\\\\\ \left\{ \begin{array}{l} \mathtt{x^2=3^2\,cos^2\,t}\\ \mathtt{y^2=3^2\,sin^2\,t} \end{array} \right.\\\\\\[/tex]

Now, add them both, and you have:

[tex]\mathtt{x^2+y^2=3^2\,cos^2\,t+3^2\,sin^2\,t}\\\\ \mathtt{x^2+y^2=3^2\cdot (cos^2\,t+sin^2\,t)\qquad\quad but~~cos^2\,t+sin^2\,t=1}\\\\ \mathtt{x^2+y^2=3^2\cdot 1}[/tex]

[tex]\begin{array}{lcl} \!\!\!\mathtt{x^2+y^2=3^2}&\quad\longleftarrow\quad&\texttt{and now we have already}\\&&\texttt{eliminated the parameter.} \end{array}[/tex]

That equation represents a circumference, whose center is at the origin (0, 0), and has a radius of  3.


I hope this helps. =)


Tags:  eliminate parameter parametric equation curve circle circumference sine cosine sin cos trigonometric trig relation identity algebra calculus

Answer:

x^2+y^2 = 3^2

Step-by-step explanation:

square both equations -  

(x)^2=(3 cos t)^2

(y)^2 =(3 sin t)^2

x^2 = 3^2 cos^2t  

y^2=3^2 sin^2t

add both

x^2+y^2=3^2 cos^2t+3^2 sin^2t  

x^2+y^2=3^2 (cos^2t+sin^2t)

cos^2t+sin^2t = 1

x^2+y^2=3^2(1)

x^2+y^2 = 3^2