Respuesta :
If you're using the app, try seeing this answer through your browser: https://brainly.com/question/2978356
——————————
Eliminate the parameter from the parametric equations:
[tex]\left\{ \begin{array}{l} \mathtt{x=3\,cos\,t}\\ \mathtt{y=3\,sin\,t} \end{array} \right.\qquad\qquad\mathtt{t\in\mathbb{R}}[/tex]
The key is trying to find a relation between x and y, so you can get rid of that parameter t. See what happens if you square both equations:
[tex]\left\{ \begin{array}{l} \mathtt{x^2=(3\,cos\,t)^2}\\ \mathtt{y^2=(3\,sin\,t)^2} \end{array} \right.\\\\\\ \left\{ \begin{array}{l} \mathtt{x^2=3^2\,cos^2\,t}\\ \mathtt{y^2=3^2\,sin^2\,t} \end{array} \right.\\\\\\[/tex]
Now, add them both, and you have:
[tex]\mathtt{x^2+y^2=3^2\,cos^2\,t+3^2\,sin^2\,t}\\\\ \mathtt{x^2+y^2=3^2\cdot (cos^2\,t+sin^2\,t)\qquad\quad but~~cos^2\,t+sin^2\,t=1}\\\\ \mathtt{x^2+y^2=3^2\cdot 1}[/tex]
[tex]\begin{array}{lcl} \!\!\!\mathtt{x^2+y^2=3^2}&\quad\longleftarrow\quad&\texttt{and now we have already}\\&&\texttt{eliminated the parameter.} \end{array}[/tex]
That equation represents a circumference, whose center is at the origin (0, 0), and has a radius of 3.
I hope this helps. =)
Tags: eliminate parameter parametric equation curve circle circumference sine cosine sin cos trigonometric trig relation identity algebra calculus
——————————
Eliminate the parameter from the parametric equations:
[tex]\left\{ \begin{array}{l} \mathtt{x=3\,cos\,t}\\ \mathtt{y=3\,sin\,t} \end{array} \right.\qquad\qquad\mathtt{t\in\mathbb{R}}[/tex]
The key is trying to find a relation between x and y, so you can get rid of that parameter t. See what happens if you square both equations:
[tex]\left\{ \begin{array}{l} \mathtt{x^2=(3\,cos\,t)^2}\\ \mathtt{y^2=(3\,sin\,t)^2} \end{array} \right.\\\\\\ \left\{ \begin{array}{l} \mathtt{x^2=3^2\,cos^2\,t}\\ \mathtt{y^2=3^2\,sin^2\,t} \end{array} \right.\\\\\\[/tex]
Now, add them both, and you have:
[tex]\mathtt{x^2+y^2=3^2\,cos^2\,t+3^2\,sin^2\,t}\\\\ \mathtt{x^2+y^2=3^2\cdot (cos^2\,t+sin^2\,t)\qquad\quad but~~cos^2\,t+sin^2\,t=1}\\\\ \mathtt{x^2+y^2=3^2\cdot 1}[/tex]
[tex]\begin{array}{lcl} \!\!\!\mathtt{x^2+y^2=3^2}&\quad\longleftarrow\quad&\texttt{and now we have already}\\&&\texttt{eliminated the parameter.} \end{array}[/tex]
That equation represents a circumference, whose center is at the origin (0, 0), and has a radius of 3.
I hope this helps. =)
Tags: eliminate parameter parametric equation curve circle circumference sine cosine sin cos trigonometric trig relation identity algebra calculus
Answer:
x^2+y^2 = 3^2
Step-by-step explanation:
square both equations -
(x)^2=(3 cos t)^2
(y)^2 =(3 sin t)^2
x^2 = 3^2 cos^2t
y^2=3^2 sin^2t
add both
x^2+y^2=3^2 cos^2t+3^2 sin^2t
x^2+y^2=3^2 (cos^2t+sin^2t)
cos^2t+sin^2t = 1
x^2+y^2=3^2(1)
x^2+y^2 = 3^2