Respuesta :

x^2 = 28y 
(x - 0)^2 = 4*7 (y - 0) 
a = 7 

Answer:

The general equation of parabola is given by:

[tex](x-h)^2 =2p(y-k)[/tex]           ....[1]

where,

vertex = (h, k)

Focus = (0, p/2)

directrix : y = -p/2

and

p represents the focal width

Given the parabola:

[tex]x^2=28y[/tex]

On comparing with [1] we have;

h=k =0

Vertex=(0, 0)

and

2p = 28

Divide both sides by 2 we have;

p = 14

Focus = (0, 14/2)

⇒Focus= (0, 7)

Directrix:

y = -14/2

⇒y = -7

Therefore, the equation of parabola [tex]x^2=28y[/tex] has

vertex = (0, 0)

focus = (0, 7)

directrix:  y =  -7

Focal width = 14