Respuesta :

The function's standard form equation is equivalent to [tex]\frac{-x^2}{4}+1=0[/tex].

A mathematical expression (equation) that can be used to define and represent the relationship between two or more variables on a graph is known as a quadratic function.

The standard form of a quadratic equation in mathematics is given by;

[tex]ax^2+bx+c=0\\y=f(x)=ax^2+bx+c[/tex]

Next, using the information in the previous table, we would create the following system of equations:

[tex]-3=a(-4)^2+b(-4)+c\\-3=16a-4b+c[/tex].......equation (i)

[tex]0=a(-2)^2+b(-2)+c\\0= 4a-2b+c[/tex]........equation(ii)

[tex]1=a(0)^2+b(0)+c\\1=c[/tex].........equation (iii)

Inputting the value of c into equations 1 and 2 results in:

[tex]-4=16a-4b[/tex]......ewuation(iv)

[tex]-1=4a-2b[/tex]......equation(v)

Equation 5 is multiplied by two and solved concurrently to yield:

[tex]-2=8a\\a=\frac{-2}{8} \\a=\frac{-1}{4}[/tex]

What we have for b's value is:

[tex]-1=4a-2b\\-1=4(\frac{-1}{4})-2b\\ -1=-1-2b\\2b=0\\b=0[/tex]

Inputting the values of a, b, and c into a quadratic equation in standard form:

[tex]ax^2+bx+c=0\\\frac{-1}{4}x^2+(0)x+1=0\\ \frac{-x^2}{4} +1=0[/tex]

When x equals 2, we get:

[tex]\frac{-x^2}{4} +1=0\\\frac{-2^2}{4}+1=0\\ \frac{-4}{4}+1=0\\ -1+1=0[/tex]

To learn more about quadratic function, refer:-

https://brainly.com/question/18958913

#SPJ4

Ver imagen rathipushpendra345