Respuesta :
Answer:
[tex]tn = {3 \times \sqrt{2} }^{n - 1} [/tex]
Step-by-step explanation:
since it is geometric sequence we will use the formula
[tex]tn = {ar}^{n - 1} [/tex]
n = 10
r = √2
a = 3
lets first see the result of the 10th term
[tex]t10 = {ar}^{10 - 1} [/tex]
[tex]t10 = {ar}^{9} [/tex]
[tex]t10 = {3 \times \sqrt{2} }^{9} [/tex]
t10 = 3 × 22.63
t10 = 67.89
approximately 68
t10 = 68
for the nth term
Tn = ar^n–1
[tex]tn = {3 \times (\sqrt{2} })^{n - 1} [/tex]
i hope this helps
Answer:
[tex]a_n=3\left(\sqrt{2}\right)^{n-1}[/tex]
[tex]a_{10}=48 \sqrt{2}[/tex]
Step-by-step explanation:
[tex]\boxed{\begin{minipage}{5.5 cm}\underline{Geometric sequence}\\\\$a_n=ar^{n-1}$\\\\where:\\\phantom{ww}$\bullet$ $a$ is the first term. \\\phantom{ww}$\bullet$ $r$ is the common ratio.\\\phantom{ww}$\bullet$ $a_n$ is the $n$th term.\\\phantom{ww}$\bullet$ $n$ is the position of the term.\\\end{minipage}}[/tex]
Given:
- [tex]a = 3[/tex]
- [tex]r = \sqrt{2}[/tex]
- [tex]n=10[/tex]
Substitute the given values of a and r into the formula to create an equation for the nth term:
[tex]a_n=3\left(\sqrt{2}\right)^{n-1}[/tex]
To find the 10th term, substitute n = 10 into the equation:
[tex]\implies a_{10}=3\left(\sqrt{2}\right)^{10-1}[/tex]
[tex]\implies a_{10}=3\left(\sqrt{2}\right)^{9}[/tex]
[tex]\implies a_{10}=3 \cdot 2^{\frac{9}{2}}[/tex]
[tex]\implies a_{10}=3 \cdot 2^{4+\frac{1}{2}}[/tex]
[tex]\implies a_{10}=3 \cdot 2^{4} \cdot 2^{\frac{1}{2}}[/tex]
[tex]\implies a_{10}=3 \cdot 16 \cdot \sqrt{2}[/tex]
[tex]\implies a_{10}=48 \sqrt{2}[/tex]