NO LINKS!! Determine whether the sequence is geometric.
2, 4/√(3) , 8/3, 16/3√(3) , . . .

Choose:
1. Yes, the sequence is geometric
2. No, the sequence is not geometric

If so, find the common ratio. (if the sequence is not geometric, enter NONE)

Respuesta :

Geometric sequence has a common ratio.

Let's verify is the ratio of subsequent terms is common:

  • [tex]r=t_2/t_1=(4/\sqrt{3})/2 = 2/\sqrt{3} =2\sqrt{3}/3[/tex]
  • [tex]r=t_3/t_2=(8/3)/(4/\sqrt{3}) = 2/\sqrt{3} =2\sqrt{3}/3[/tex]
  • [tex]r=t_4/t_3=(16/3\sqrt{3})/ (8/3) = 2/\sqrt{3} =2\sqrt{3}/3[/tex]

As wee se the ratio is common, it confirms that the sequence is geometric.

Common ratio is:

  • [tex]r=2\sqrt{3}/3[/tex]

Answer:

Yes, the sequence is geometric.

[tex]\textsf{Common ratio}=\dfrac{2\sqrt{3}}{3}[/tex]

Step-by-step explanation:

Given sequence:

[tex]2, \; \dfrac{4}{\sqrt{3}},\; \dfrac{8}{3},\;\dfrac{16}{3\sqrt{3}},\;...[/tex]

A geometric sequence has a common ratio.

Therefore, to check if the given sequence has a common ratio, divide each term by the previous term:

[tex]\boxed{\begin{aligned}\dfrac{16}{3\sqrt{3}} \div \dfrac{8}{3}&=\dfrac{16}{3\sqrt{3}} \times \dfrac{3}{8}\\\\&=\dfrac{48}{24\sqrt{3}}\\\\&=\dfrac{2}{\sqrt{3}}\\\\&=\dfrac{2\sqrt{3}}{3}\end{aligned}}[/tex]

[tex]\boxed{\begin{aligned}\dfrac{8}{3} \div \dfrac{4}{\sqrt{3}}&=\dfrac{8}{3} \times \dfrac{\sqrt{3}}{4}\\\\&=\dfrac{8\sqrt{3}}{12}\\\\&=\dfrac{2\sqrt{3}}{3}\end{aligned}}[/tex]

[tex]\boxed{\begin{aligned} \dfrac{4}{\sqrt{3}} \div 2&= \dfrac{4}{\sqrt{3}} \times \dfrac{1}{2}\\\\&= \dfrac{4}{2\sqrt{3}} \\\\&=\dfrac{2}{\sqrt{3}}\\\\&=\dfrac{2\sqrt{3}}{3}\end{aligned}}[/tex]

As there is a common ratio, the sequence is geometric.

The common ratio is:

  • [tex]\dfrac{2\sqrt{3}}{3}[/tex]