Respuesta :

Answer:

(x-3)^3

Step-by-step explanation:

[tex]= x^3-9x^2+27x-27 \\ =(x − 3) (x² + 3x + 9) − 9x (x - 3) \\ =(x − 3) · (x² + 3x + 9 − 9x) \\ =(x-3)·(x²-6x+9) \\ =(x − 3) · (x − 3)^2 \\ = {(x - 3)}^{3} [/tex]

Or Apply cube of difference rule

[tex]{x}^{3} - 3 {x}^{2} y + 3x {y}^{2} - {y}^{3} [/tex]

Ver imagen christinamaso3

Answer:

[tex](x-3)^3[/tex]

Step-by-step explanation:

Given polynomial:

[tex]x^3-9x^2+27x-27[/tex]

Given (x - 3) is a factor of the polynomial, divide the polynomial by the factor using long division to find the other factor:

[tex]\large \begin{array}{r}x^2-6x+9\phantom{)}\\x-3{\overline{\smash{\big)}\,x^3-9x^2+27x-27\phantom{)}}}\\{-~\phantom{(}\underline{(x^3-3x^2)\phantom{-b0000000)}}\\-6x^2+27x-27\phantom{)}\\-~\phantom{()}\underline{(-6x^2+18x)\phantom{0000.}}\\9x-27\phantom{)}\\-~\phantom{()}\underline{(9x-27)\phantom{}}\\0\phantom{)}\end{array}[/tex]

Therefore:

[tex]x^3-9x^2+27x-27=(x-3)(x^2-6x+9)[/tex]

Factor (x² - 6x + 9):

[tex]\implies x^2-6x+9[/tex]

[tex]\implies x^2-3x-3x+9[/tex]

[tex]\implies x(x-3)-3(x-3)[/tex]

[tex]\implies (x-3)(x-3)[/tex]

Therefore, the fully factored polynomial is:

[tex]\implies x^3-9x^2+27x-27=(x-3)(x-3)(x-3)[/tex]

[tex]\implies x^3-9x^2+27x-27=(x-3)^3[/tex]