Respuesta :
For solving of the area of a square pyramid, we can use the formula below:
A=a²+2a sqrt (a²/4 +h²)
where s for the slant height, r for the a/2, where a is the side length and h for the height
Substitute the values,
A=40²+(2*40) SQRT (40²/4 +21²)
A=3920
The answer is 3920 for the area of the square pyramid.
A=a²+2a sqrt (a²/4 +h²)
where s for the slant height, r for the a/2, where a is the side length and h for the height
Substitute the values,
A=40²+(2*40) SQRT (40²/4 +21²)
A=3920
The answer is 3920 for the area of the square pyramid.
Answer with explanation:
Base of Pyramid which is in the shape of square ,having length of each side =40 inches
Height of pyramid = 21 inches
Slant height = 29 inches
Surface area of Square Pyramid
= Area of four Triangular faces +Area of Square base
Relation between Slant height (S), Length of base (B) and Height (H) of pyramid
[tex]S=\frac{\sqrt{B^2+4H^2}}{2}[/tex]
[tex]29^2=\sqrt{\frac{40^2}{4}+21^2}[/tex]
So,this is a Square pyramid.
Surface area of Pyramid
[tex]=B\times(B+2 S)\\\\=B \times(B+\sqrt{B^2+4H^2})\\\\=40 \times(40+\sqrt{40^2+4\times 21^2})\\\\=40 \times(40+\sqrt{3364})\\\\=40 \times(40+58)\\\\=40 \times 98\\\\=3920[/tex] square inches
Volume of Pyramid
[tex]=\frac{1\times a^2\times H}{3}\\\\=\frac{40^2 \times 21}{3}\\\\=1600 \times 7\\\\=11200[/tex] cubic inches
