Respuesta :
there are 360° in a circle, now, this "sector" of the circle has an angle of 70°, so for 70°, there are 8in or circumference, or arc length
how much arc length or circumference in 360° then?
well [tex]\bf \begin{array}{ccllll} degrees&circumference\\ -----&--------\\ 70&8\\ 360&x \end{array}\implies \cfrac{70}{360}=\cfrac{8}{x}[/tex]
solve for "x"
how much arc length or circumference in 360° then?
well [tex]\bf \begin{array}{ccllll} degrees&circumference\\ -----&--------\\ 70&8\\ 360&x \end{array}\implies \cfrac{70}{360}=\cfrac{8}{x}[/tex]
solve for "x"
Answer: 41.14 inches
Step-by-step explanation:
The formula to find the length of an arc :-
[tex]l=C\times\dfrac{\theta}{360}[/tex], where C is the circumference of the circle, [tex]\theta[/tex] is the central angle cuts off an arc of length 'l'.
Given : Central angle : = [tex]\theta = 70{\circ}[/tex]
Length of arc: [tex]l= 8\ inches[/tex]
Now, substitute all theses value in the above formula , we get
[tex]8=C\times\dfrac{70}{360}\\\\\Rightarrow\ 8=C\times\dfrac{7}{36}\\\\\Rightarrow\ C=\dfrac{36\times8}{7}=41.1428571429\approx41.14\text{ inches}[/tex]
Hence, the circumference of the circle is about 41.14 inches.