Respuesta :
Answer:
3.x = -3 or x =5.
4.y = -4 or y=12.
Step-by-step explanation:
3. Use the distance formula to find the value of x if the distance between (1, 2) and (x, 5) is 5units.
The distance formula is:
[tex]d =\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}[/tex]
where:
d is the distance between the two points
[tex](x1, y1) [/tex]are the coordinates of the first point
[tex](x_2, y_2[/tex]) are the coordinates of the second point
In this case, we have:
d = 5
[tex](x_1, y_1) = (1, 2)[/tex]
[tex](x_2, y_2) = (x, 5)[/tex]
`Substituting these values into the distance formula, we get:
[tex]5 = \sqrt{(x - 1)^2 + (5 - 2)^2}[/tex]
squaring both side
[tex]25 = (x - 1)^2 + 3^2[/tex]
[tex]25 = x^2 - 2x + 1 + 9[/tex]
[tex]25 = x^2 - 2x + 10[/tex]
[tex]x^2-2x+10-25=0[/tex]
[tex]x^2-2x - 15=0[/tex]
Factoring the quadratic, we get:
[tex]x^2-(5-3)x-15=0[/tex]
[tex]x^2-5x+3x-15=0[/tex]
x(x-5)+3(x-5)=0
(x-5)(x+3)=0
either x=5
or x=-3
Therefore, x = -3 or x =5.
4. Use the distance (-1, 4) and (5, y) is 10 units.
The distance formula is the same as in the previous problem. In this case, we have:
d = 10
[tex](x_1, y_1) = (-1, 4)[/tex]
[tex](x_2, y_2) = (5, y)[/tex]
Substituting these values into the distance formula, we get:
[tex]10 =\sqrt{(5 - (-1))^2 + (y - 4)^2}[/tex]
[tex]10 = \sqrt{6^2 + (y - 4)^2}[/tex]
squaring both sides
100 = 36 + (y - 4)²
100-36=(y-4)²
64 = (y - 4)²
±8 = y - 4
taking positive
8=y-4
y=8+4
y=12
again
taking negative
-8=y-4
y = -8+4
y = -4
Therefore, y = -4 or y=12.
Answer:
3) x = -3, x = 5
4) y = -4, y = 12
Step-by-step explanation:
To calculate the distance between two points we can use the distance formula.
[tex]\boxed{\begin{minipage}{7.4 cm}\underline{Distance Formula}\\\\$d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$\\\\\\where:\\ \phantom{ww}$\bullet$ $d$ is the distance between two points. \\\phantom{ww}$\bullet$ $(x_1,y_1)$ and $(x_2,y_2)$ are the two points.\\\end{minipage}}[/tex]
Question 3
To find the values of x, given the distance between points (1, 2) and (x, 5) is 5 units, substitute the coordinates of the points into the distance formula and set d = 5.
[tex]\begin{aligned}\sqrt{(x-1)^2+(5-2)^2}&=5\\\sqrt{(x-1)^2+(3)^2}&=5\\\sqrt{(x-1)^2+9}&=5\\\left(\sqrt{(x-1)^2+9}\right)^2&=5^2\\(x-1)^2+9&=25\\x^2-2x+1+9&=25\\x^2-2x-15&=0\\x^2-5x+3x-15&=0\\x(x-5)+3(x-5)&=0\\(x+3)(x-5)&=0\\\\(x+3)&=0 \implies x=-3\\(x-5)&=0 \implies x=5\end{aligned}[/tex]
Therefore, the values of x are:
- x = -3 or x = 5
[tex]\hrulefill[/tex]
Question 4
To find the values of y, given the distance between points (-1, 4) and (5, y) is 10 units, substitute the coordinates of the points into the distance formula and set d = 10.
[tex]\begin{aligned}\sqrt{(5-(-1))^2+(y-4)^2}&=10\\\sqrt{(6)^2+(y-4)^2}&=10\\\sqrt{36+(y-4)^2}&=10\\\left(\sqrt{36+(y-4)^2}\right)^2&=10^2\\36+(y-4)^2&=100\\36+y^2-8y+16&=100\\y^2-8y-48&=0\\y^2-12y+4y-48&=0\\y(y-12)+4(y-12)&=0\\(y+4)(y-12)&=0\\\\(y+4)&=0 \implies y=-4\\(y-12)&=0 \implies y=12\end{aligned}[/tex]
Therefore, the values of y are:
- y = -4, y = 12

