Respuesta :
sin [sin(sinx)]
You have two ways into this the first is:
sin y
where y = sinz and z = sinx
d(siny)/dx = cosy * dy/dx
dy/dx = cosz * dz/dx
dz/dz = cosx
and do reverse sub
dy/dz = cosz * cosx
d(siny)/dx = cosz * cosx * cosy = cos(sin(sinx)) * cosx * cos(sinx)
or the way I prefer is take the derivative of each term in row:
cos(sin(sinx)) * cos(sinx) * cosx
You have two ways into this the first is:
sin y
where y = sinz and z = sinx
d(siny)/dx = cosy * dy/dx
dy/dx = cosz * dz/dx
dz/dz = cosx
and do reverse sub
dy/dz = cosz * cosx
d(siny)/dx = cosz * cosx * cosy = cos(sin(sinx)) * cosx * cos(sinx)
or the way I prefer is take the derivative of each term in row:
cos(sin(sinx)) * cos(sinx) * cosx
Answer:
[tex]\displaystyle \frac{dy}{dx} = \cos x \cos (\sin x) \cos \Big( \sin (\sin x) \Big)[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle y = \sin \Big( \sin (\sin x) \Big)[/tex]
Step 2: Differentiate
- Trigonometric Differentiation [Derivative Rule - Chain Rule]: [tex]\displaystyle y' = \cos \Big( \sin (\sin x) \Big) \Big( \sin (\sin x) \Big)'[/tex]
- Trigonometric Differentiation [Derivative Rule - Chain Rule]: [tex]\displaystyle y' = \cos (\sin x) \cos \Big( \sin (\sin x) \Big)(\sin x)'[/tex]
- Trigonometric Differentiation: [tex]\displaystyle y' = \cos x \cos (\sin x) \cos \Big( \sin (\sin x) \Big)[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation