so hmmm let's do the left-hand-side first
[tex]\bf \cfrac{sec(x)-csc(x)}{sec(x)+csc(x)}\implies \cfrac{\frac{1}{cos(x)}-\frac{1}{sin(x)}}{\frac{1}{cos(x)}+\frac{1}{sin(x)}}\implies
\cfrac{\frac{sin(x)-cos(x)}{cos(x)sin(x)}}{\frac{sin(x)+cos(x)}{cos(x)sin(x)}}
\\\\\\
\cfrac{sin(x)-cos(x)}{cos(x)sin(x)}\cdot \cfrac{cos(x)sin(x)}{sin(x)+cos(x)}\implies \boxed{\cfrac{sin(x)-cos(x)}{sin(x)+cos(x)}}[/tex]
now, let's do the right-hand-side then
[tex]\bf \cfrac{tan(x)-1}{tan(x)+1}\implies \cfrac{\frac{sin(x)}{cos(x)}-1}{\frac{sin(x)}{cos(x)}+1}\implies \cfrac{\frac{sin(x)-cos(x)}{cos(x)}}{\frac{sin(x)+cos(x)}{cos(x)}}
\\\\\\
\cfrac{sin(x)-cos(x)}{cos(x)}\cdot \cfrac{cos(x)}{sin(x)+cos(x)}\implies \boxed{\cfrac{sin(x)-cos(x)}{sin(x)+cos(x)}}[/tex]