GIVEN: A = 0 - 2 0 3 - 3 - 2 and the spectum of Ais, A= (–2,1). La sa, , = {, 112 - 2 1 = a) Determine a basis, B(-2) for the eigenspace associated with 1. =-2 b) Determine a basis, B(1) for the eigenspace associated with 12 =1 T- - 1 2 - 2 11. = -1 [20](3) GIVEN: A = -3 4-2 and the spectum of A is, A= (-1,1,2} = 1 -3 3-1 la. 2 Determine a basis, B(-1) for the eigenspace associated with 1: =-1 A 2-2 R -35-2 A 33 0 xe E-1) A4 = -xe-(A+I)= = (91)-(: 194 ) : [i]<, :- B(-1) = { [i]} 0 1 کے x= 23 b) Determine a basis, B(1) for the eigenspace associated with 1 =1 L o -2 2-2 R (-3 3-24 -3 3 - 2 xeE(1) Ar=x4 (A-I)2 = 4 Vio ) 88 :- B(1) = { [!]} 1= --[i]< = Determine a basis, B(2) for the eigenspace associated with d=2 reE(2) Ax=2x4(A-25)2 = 0 A R A -3 2-2 -3 2-2 -3 3-3 -( LF 100 01-1 ООО )-=-li) :- B(2) = { [j]} =