Respuesta :

Answer:

y = [tex]\frac{-2}{3}[/tex]x + [tex]\frac{11}{3}[/tex]

Step-by-step explanation:

Step 1: Use the slope formula to determine the slope

We know that the y value decrease by 2 and the x increases by 3 so the formula of [tex]\frac{deltaY}{deltaX}[/tex] can also be written as [tex]\frac{-2}{3}[/tex]

(delta Y and delta X represent the change in the x and y)

Step 2: Find the y-intercept

We substitute the slope and the point(-2, 5) into y=mx+b to solve for b

(5)=([tex]\frac{-2}{3}[/tex])(-2) + b

5 = [tex]\frac{4}{3}[/tex] + b

5 -  [tex]\frac{4}{3}[/tex]  = b

b = [tex]\frac{11}{3}[/tex]

Step 3: Write the equation out

y = mx+ b

y = [tex]\frac{-2}{3}[/tex]x + [tex]\frac{11}{3}[/tex]

Therefore the equation of a line that passes through the point (-2, 5) with a change in the x value of 3 and y value of -2 is y = [tex]\frac{-2}{3}[/tex]x + [tex]\frac{11}{3}[/tex]