kaylww
contestada

The function f(x)=g(x), where f(x)=2x-5 and g(x)=x^2-6. The table below shows the process of solving using successive approximations. Continue this process to find the positive solution to the nearest 10th.

Respuesta :

Answer:

The solutions of the given situation is x=2.4 and x=-0.4.

Step-by-step explanation:

Given : The function f(x)=g(x), where [tex]f(x)=2x-5[/tex] and [tex]g(x)=x^2-6[/tex]

To find : The positive solution of the given situation.

Solution :

We have given the functions :

[tex]f(x)=2x-5[/tex] and [tex]g(x)=x^2-6[/tex]

The condition is f(x)=g(x)

Substitute the values, in the given condition

[tex]f(x)=g(x)[/tex]

[tex]2x-5=x^2-6[/tex]

[tex]x^2-2x-1=0[/tex]

Solving the quadratic equation by discriminant method,

General form - [tex]ax^2+bx+c=0[/tex]

[tex]D=b^2-4ac[/tex]

Solution is [tex]x=\frac{-b\pm\sqrt{D}}{2a}[/tex]

Equation is [tex]x^2-2x-1=0[/tex]

where a=1 , b=-2, c=-1

[tex]D=b^2-4ac[/tex]

[tex]D=(-2)^2-4(1)(-1)[/tex]

[tex]D=4+4[/tex]

[tex]D=8[/tex]

Solution is [tex]x=\frac{-b\pm\sqrt{D}}{2a}[/tex]

[tex]x=\frac{-(-2)\pm\sqrt{8}}{2(1)}[/tex]

[tex]x=\frac{2\pm2\sqrt{2}}{2}[/tex]

[tex]x=1\pm\sqrt{2}[/tex]

[tex]x=1+\sqrt{2}, x=1-\sqrt{2}[/tex]

[tex]x=2.4, x=-0.4[/tex]

Therefore, The solutions of the given situation is x=2.4 and x=-0.4.

The positive solution to the nearest 10th is; x=3.82

Quadratic solutions

According to the given function;

  • Where, f(x)=g(x)

Hence; we have;

  • 2x-5 = x² -6

By rearrangement; we have;

  • x² -2x -1 = 0.

By solving the equation quadratically, we have;

  • x = 1± 2√2

x = 3.82 or -1.82

Read more on quadratic solutions;

https://brainly.com/question/1214333