Given the polynomial 9x2y6 − 25x4y8, rewrite as a product of polynomials.

(9xy3 − 25x2y4)(xy3 + x2y4)
(9xy3 − 25x2y4)(xy3 − x2y4)
(3xy3 − 5x2y4)(3xy3 + 5x2y4)
(3xy3 − 5x2y4)(3xy3 − 5x2y4)

Respuesta :

Answer:

Option 3

(3xy³ + 5x²y⁴)  (3xy³ - 5x²y⁴)

Step-by-step explanation:

Factorize polynomials:

Use exponent law:

                   [tex]\boxed{\bf a^{m*n}=(a^m)^n} \ & \\\\\boxed{\bf a^m * b^m = (a*b)^m}[/tex]

9x²y⁶ = 3²* x² * y³*² = 3² * x² * (y³)² = (3xy³)²

25x⁴y⁸ = 5² * x²*² * y⁴*² = 5² * (x²) * (y⁴)² = (5x²y⁴)²

Now use the identity:  a² - b² = (a +b) (a -b)

Here, a = 3xy³ & b = 5x²y⁴

9x²y⁶ - 25x⁴y⁸ = 3²x²(y³)² - 5²(x²)² (y⁴)²

                       = (3xy³)² - (5x²y⁴)²

                      = (3xy³ + 5x²y⁴)  (3xy³ - 5x²y⁴)