A plane in 3 dimensions has a normal (or perpendicular vector) n, and the point P lies on the plane, where
N(1/2/2) and P = ( 3 4 5 ) . (a) Find a unit vector u parallel to n. (b) Write the equation of the plane in the form ax+by+cz = d where a, b, c, and d are numbers.
(c) Find the point A on the plane which is closest to the point B = ( 1 1 0 ). n =