Respuesta :
Answer:
siny is the answer.
Step-by-step explanation:
The given expression is [tex]\frac{\text{(cosec y + cot y)(cosec y - cot y)}}{\text{cosec y}}[/tex]
We have to simplify this expression.
[tex]\frac{\text{(cosec y + cot y)(cosec y - cot y)}}{\text{cosec y}}[/tex] = [tex]\frac{cosec^{2}y-cot^{2}y}{cosecy}[/tex] [Since (a-b) (a+b) = a²-b²]
Now we know (1 + cot² y) = cosec² y [identity]
The expression will become
[tex]\frac{(1+cot^2y)-cot^2y}{cosec y}[/tex]
= [tex]\frac{1}{cosec y}[/tex]
= Siny
Answer:
sin y
Step-by-step explanation:
Start with the numerator
(csc y + cot y)(csc y - cot y)=csc²y - cot²y
cot²y = csc²y -1
replace cot²y with csc²y -1
csc²y - csc²y +1 =1
Then 1/csc y = sin y