What is the measure of angle C, to the nearest degree? (Image Attached)
a. 22*
b. 43*
c. 47*
d. 68*

Answer:
((B)
Step-by-step explanation:
From the figure, it is given that ABC is a triangle and AB=35 and BC=45.
Now, from ΔABC, using the sine law, we get
[tex]\frac{sinA}{BC}=\frac{sinC}{AB}[/tex]
Substituting the given values, we get
[tex]\frac{sin61^{\circ}}{45}=\frac{sinC}{35}[/tex]
[tex]sinC=\frac{35\times(sin61)}{45}[/tex]
[tex]sinC=\frac{35\times(0.874)}{45}[/tex]
[tex]sinC=\frac{30.611}{45}[/tex]
[tex]sinC=0.680[/tex]
[tex]C=sin^{-1}(0.680)[/tex]
[tex]C=42.84[/tex]
[tex]C[/tex]≈[tex]43[/tex]
Thus, the measure of angle C is 43.
Hence, option (B) is correct.