Respuesta :
Given:
n = 30 students
sample mean (X) = 95
standard deviation (s) = 6.6
We use the t distribution.
99% interval means 0.99 = 1 - α ; α = 0.01
tα/2 = t0.005 = invT(0.995,29) = 2.75638
X - t a/2 * (s/√n) < μ < X + t a/2 * (s/√n)
95 - 2.75638*(6.6/√30) < μ < 95 + 2.75638*(6.6/√30)
95 - 3 < μ < 95 + 3
92 < μ < 98
n = 30 students
sample mean (X) = 95
standard deviation (s) = 6.6
We use the t distribution.
99% interval means 0.99 = 1 - α ; α = 0.01
tα/2 = t0.005 = invT(0.995,29) = 2.75638
X - t a/2 * (s/√n) < μ < X + t a/2 * (s/√n)
95 - 2.75638*(6.6/√30) < μ < 95 + 2.75638*(6.6/√30)
95 - 3 < μ < 95 + 3
92 < μ < 98
By assuming that, the population has a normal distribution, the value of [tex]\mu[/tex] can be calculated for the standard deviation of 6.6, The random distribution will have [tex]\mu[/tex], as,
[tex]92<\mu<95[/tex]
Given information:
Sample mean [tex]=95[/tex]
The standard deviation [tex]=6.6[/tex]
Now using the t-Distribution
99% of interval refers 0.99
[tex]0.99=1-\alpha\\\alpha=0.01[/tex]
[tex]t(\alpha/2)=t'(0.995)=2.756[/tex]
Now using the equation:
[tex]X-t(\alpha/2)\times (s/\sqrt{n})<\mu<X+t(\alpha/2)\times (s/\sqrt{n})[/tex]
[tex]95-2.7563\times(6.6/\sqrt{30} )<\mu<95+2.7563\times(6.6/\sqrt{30})[/tex]
[tex]95-3<\mu<95+3[/tex]
[tex]92<\mu<98[/tex]
Hence,
The random distribution will have [tex]\mu[/tex]
[tex]92<\mu<95[/tex]
For more information visit:
https://brainly.com/question/13574945