1. After 42 days a 2.0 g sample of phosphorus-32 contains only 0.25 g of the isotope. What is the half-life of phosphorus-32?

Respuesta :

The half-life of phosphorous -32 is 14 days.

Half-life:

The period of time it takes for 50% of a radioactive substance's atoms to disintegrate.

How to calculate the half-life?

[tex]T= \frac{ln[2]}{A}[/tex]

Mass of atoms initially, [tex]$N_{0}=2.0 \mathrm{~g}$[/tex]

Mass after 42 days, [tex]$N=0.25 \mathrm{~g}[/tex].

Mass left undecayed we have,

[tex]$\frac{N}{N_{0}}=\frac{1}{2^{n}}$[/tex]

where [tex]$n$[/tex] is number of half lives occured

[tex]$\begin{aligned}&\Rightarrow \frac{0.25}{2}=\frac{1}{2^{n}} \\&\Rightarrow \frac{1}{8}=\frac{1}{2^{n}} \\&\Rightarrow n=3\end{aligned}$[/tex]

Number of half lives occured in 42 days is 3

if half life is [tex]$t_{\frac{1}{2}}$[/tex]

then [tex]$3 t_{\frac{1}{2}}=42$[/tex]

or

[tex]$t_{\frac{1}{2}}=14$[/tex]

[tex]$\therefore$[/tex]half life is of 14 days.

Therefore, The half-life of phosphorous -32 is 14 days.

Learn more about: https://brainly.com/question/16980763

#SPJ2