Respuesta :
1) B. -3a^7b^4/15a^2
2)D. a-^3b^4/ab^2
3) B n^12/16m^2n^2m^4. 2 n's cancel on the top and bottom
2)D. a-^3b^4/ab^2
3) B n^12/16m^2n^2m^4. 2 n's cancel on the top and bottom
The given expressions can be converted into the form of positive exponents by using arithmetic operations. For better understanding refer the below solution.
Given :
1st expression - [tex]\dfrac{-3a^{-2}b^3}{15a^{-7}b^{-1}}[/tex]
2nd expression - [tex]\dfrac{a^{3}b^{-2}}{ab^{-4}}[/tex]
3rd expression - [tex]\left[\dfrac{4mn}{m^{-2}n^{6}}\right ]^{-2}[/tex]
1).
Following steps can be use to determine the 1st expression in positive exponents:
Step 1 - Multiply numerator and denominator by [tex]a^7[/tex].
[tex]=\dfrac{-3a^{-2}b^3}{15a^{-7}b^{-1}}\times \dfrac{a^7}{a^7}[/tex]
[tex]=\dfrac{-3a^{-2}b^3a^7}{15b^{-1}}[/tex]
Step 2 - Multiply numerator and denominator by [tex]a^2[/tex].
[tex]=\dfrac{-3a^{-2}b^3a^7}{15b^{-1}}\times \dfrac{a^2}{a^2}[/tex]
[tex]=\dfrac{-3b^3a^7}{15a^2b^{-1}}[/tex]
Step 3 - Multiply numerator and denominator by [tex]b^1[/tex].
[tex]=\dfrac{-3b^3a^7}{15a^2b^{-1}}\times \dfrac{b^1}{b^1}[/tex]
[tex]=\dfrac{-3b^3b^1a^7}{15a^2}[/tex]
Therefore, the correct option is B).
2).
Following steps can be use to determine the 2nd expression in positive exponents:
Step 1 - Multiply numerator and denominator by [tex]b^2[/tex].
[tex]=\dfrac{a^{3}b^{-2}}{ab^{-4}}\times\dfrac{b^2}{b^2}[/tex]
[tex]=\dfrac{a^{3}}{ab^{-4}b^2}[/tex]
Step 2 - Multiply numerator and denominator by [tex]b^4[/tex].
[tex]=\dfrac{a^{3}}{ab^{-4}b^2}\times\dfrac{b^4}{b^4}[/tex]
[tex]=\dfrac{a^{3}b^4}{ab^2}[/tex]
Therefore, the correct option is D).
3).
Following steps can be use to determine the 3rd expression in positive exponents:
Step 1 - Rewrite the given expression.
[tex]= \left[\dfrac{(4mn)^{-2}}{(m^{-2}n^{6})^{-2}}\right ][/tex]
Step 2 - Multiply numerator and denominator by [tex]\rm (4mn)^2\;and \;((m^{-2}n^6))^2[/tex].
[tex]=\left[\dfrac{(m^{-2}n^6)^2}{(4mn)^2}\right ]=\dfrac{m^{-4}n^{12}}{16m^2n^2}[/tex]
Step 3 - Multiply numerator and denominator by [tex]m^4[/tex].
[tex]=\dfrac{m^{-4}n^{12}}{16m^2n^2}\times\dfrac{m^4}{m^4}[/tex]
[tex]=\dfrac{n^{10}}{16m^6}[/tex]
Therefore, the correct option is B).
For more information, refer the link given below:
https://brainly.com/question/13911928