99 POINT QUESTION, PLUS BRAINLIEST!!!
(Please answer genuinely, and do not answer just for points, if you do, your answer will be deleted, and those points you earned will be taken away...)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
THIS IS CALCULUS NOT BASIC MATH...

14.) Find the area of the surface generated by revolving the curve about the x-axis.
[use attachment below]

** Please show all of you work, if you do not, your answer will be deleted, and the points you earned will be taken away...
** If you do not know how to show your work, and/or believe it is "too complex to show", please show me how to set up the problem, and the answer to the problem instead...

99 POINT QUESTION PLUS BRAINLIEST Please answer genuinely and do not answer just for points if you do your answer will be deleted and those points you earned wi class=

Respuesta :

We know, that the area of the surface generated by revolving the curve y about the x-axis is given by:

[tex]\boxed{A=2\pi\cdot\int\limits_a^by\sqrt{1+\left(y'\right)^2}\, dx}[/tex]

In this case a = 0, b = 15, [tex]y=\dfrac{x^3}{15}[/tex] and:

[tex]y'=\left(\dfrac{x^3}{15}\right)'=\dfrac{3x^2}{15}=\boxed{\dfrac{x^2}{5}}[/tex]

So there will be:

[tex]A=2\pi\cdot\int\limits_0^{15}\dfrac{x^3}{15}\cdot\sqrt{1+\left(\dfrac{x^2}{5}\right)^2}\, dx=\dfrac{2\pi}{15}\cdot\int\limits_0^{15}x^3\cdot\sqrt{1+\dfrac{x^4}{25}}\,\, dx=\left(\star\right)\\\\-------------------------------\\\\ \int x^3\cdot\sqrt{1+\dfrac{x^4}{25}}\,\,dx=\int\sqrt{1+\dfrac{x^4}{25}}\cdot x^3\,dx=\left|\begin{array}{c}t=1+\dfrac{x^4}{25}\\\\dt=\dfrac{4x^3}{25}\,dx\\\\\dfrac{25}{4}\,dt=x^3\,dx\end{array}\right|=\\\\\\[/tex]

[tex]=\int\sqrt{t}\cdot\dfrac{25}{4}\,dt=\dfrac{25}{4}\int\sqrt{t}\,dt=\dfrac{25}{4}\int t^\frac{1}{2}\,dt=\dfrac{25}{4}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}= \dfrac{25}{4}\cdot\dfrac{t^{\frac{3}{2}}}{\frac{3}{2}}=\\\\\\=\dfrac{25\cdot2}{4\cdot3}\,t^\frac{3}{2}=\boxed{\dfrac{25}{6}\,\left(1+\dfrac{x^4}{25}\right)^\frac{3}{2}}\\\\-------------------------------\\\\ [/tex]

[tex]\left(\star\right)=\dfrac{2\pi}{15}\cdot\int\limits_0^{15}x^3\cdot\sqrt{1+\dfrac{x^4}{25}}\,\, dx=\dfrac{2\pi}{15}\cdot\dfrac{25}{6}\cdot\left[\left(1+\dfrac{x^4}{25}\right)^\frac{3}{2}\right]_0^{15}=\\\\\\= \dfrac{5\pi}{9}\left[\left(1+\dfrac{15^4}{25}\right)^\frac{3}{2}-\left(1+\dfrac{0^4}{25}\right)^\frac{3}{2}\right]=\dfrac{5\pi}{9}\left[2026^\frac{3}{2}-1^\frac{3}{2}\right]=\\\\\\= \boxed{\dfrac{5\Big(2026^\frac{3}{2}-1\Big)}{9}\pi}[/tex]

Answer C.

Answer:

The answer would be C

Step-by-step explanation: