Let [tex]a[/tex] be a real constant. Consider the equation [tex] \frac{d^{2}y}{dx^{2}} -4 \frac{dy}{dx} + ay = 0[/tex] with boundary conditions [tex]y(0)=0[/tex] and [tex]y(8)=0[/tex]. For certain discrete values of [tex]a[/tex], this equation can have non-zero solutions. Find the three smallest values of [tex]a[/tex] for which this is the case.

Respuesta :

This linear ODE has characteristic equation

[tex]r^2-4r+a=0[/tex]

with roots [tex]r=2\pm\sqrt{4-a}[/tex], which gives solutions of the form

[tex]y_c=C_1e^{(2+\sqrt{4-a})x}+C_2e^{(2-\sqrt{4-a})x}[/tex]

There are three cases to consider:

(1) If [tex]a<4[/tex], then the solution will be exactly what we see above. However, the initial conditions force both [tex]C_1=C_2=0[/tex].

(2) If [tex]a=4[/tex], we're left with

[tex]y_c=C_1e^{2x}+C_2xe^{2x}[/tex]

where [tex]xe^{2x}[/tex] is added to the solution set to account for a second solution that is linearly independent of the first solution. Again, we get [tex]C_1=C_2=0[/tex].

(3) If [tex]a>4[/tex], then the square root introduces a factor of [tex]i[/tex] that admits the solution

[tex]y_c=C_1e^{2x}\cos(\sqrt{4-a}x)+C_2e^{2x}\sin(\sqrt{4-a}x)[/tex]

In this case, we arrive at [tex]C_1=0[/tex], and from the second condition we get

[tex]0=C_2e^{16}\sin(8\sqrt{4-a})[/tex]

In order that [tex]C_2\neq0[/tex], we require that [tex]8\sqrt{4-a}=n\pi[/tex], where [tex]n[/tex] is any integer. Solving for [tex]a[/tex], we get

[tex]8\sqrt{4-a}=n\pi\implies a=\dfrac{256-n^2\pi^2}{64}[/tex]

When [tex]n=0[/tex], we arrive at [tex]a=4[/tex], but remember that we're assuming that [tex]a>4[/tex], so logically the three smallest values of [tex]a[/tex] that are allowed occur for [tex]n=1,2,3[/tex]. ([tex]n^2=(-n)^2[/tex], so we can just look at positive integers [tex]n[/tex].)

Unfortunately, I'm not sure exactly what's going on next. Checking with a computer, the solution is supposed to be

[tex]a=4+4n^2\pi^2[/tex]

(Again, not sure why this is the case, but let's move on.) When [tex]n=1,2,3[/tex], we have the least values, which are, respectively,

[tex]a=4+4\pi^2[/tex]
[tex]a=4+16\pi^2[/tex]
[tex]a=4+36\pi^2[/tex]