The domain of the function f(x)=3x-6/x is {-3, -1, 2, 4, 5}. What is the function's range?
The range for the given domain of the function is
a {-10.5, -4.5, 4.5, 10.5, 13.5}
b {3.5, 1.5, 4.5, 6, 6.3}
c {5, 9, 0, 1.5, 1.8}
d {9.5, 13.5, 4.5, 6, 6.3}
e {9.5, 13.5, 0, 10.5, 13.5}

Respuesta :

 f(x)=[3x-6]/x is {-3, -1, 2, 4, 5}

 f(-3)=[3(-3) -6]]/-3 = -15/-3 = 5
 f(-1)=[3(-1) -6]]/-1= -9/-1 = 9
 f(2)=[3(2) -6]]/2 = 0/2 = 0
 f(4)=[3(4) -6]]/4 = 6/4 = 1.5
 f(5)=[3(5) -6]]/5 = 9/5 = 1.8

answer is 

c {5, 9, 0, 1.5, 1.8} 

Answer:

Range is {5, 9, 0, 1.5, 1.8}

Step-by-step explanation:

The domain of the function f(x)=3x-6/x is {-3, -1, 2, 4, 5}.

[tex]f(x)=\frac{3x-6}{x}[/tex]

Range is the set of y values or f(x) values

To find out range, we plug in domain value that is x and values and find out f(x)

[tex]f(x)=\frac{3x-6}{x}[/tex], plug in x=-3

[tex]f(-3)=\frac{3(-3)-6}{-3}=5[/tex]

Now plug in x=-1

[tex]f(-3)=\frac{3(-1)-6}{-1}=9[/tex]

Now plug in x=2

[tex]f(-3)=\frac{3(2)-6}{2}=0[/tex]

Now plug in x=4

[tex]f(-3)=\frac{3(4)-6}{4}=1.5[/tex]

Now plug in x=5

[tex]f(-3)=\frac{3(5)-6}{5}=1.8[/tex]

Range is {5, 9, 0, 1.5, 1.8}