Respuesta :
(x^a)(x^b)=x^(a+b)
(ab)(cd)=(a)(b)(c)(d)
x^-m=1/(x^m)
(3y^-4)(2y^-4)=
(3)(y^-4)(2)(y^-4)=
(6)(y^-8)=
6/(y^8)
(ab)(cd)=(a)(b)(c)(d)
x^-m=1/(x^m)
(3y^-4)(2y^-4)=
(3)(y^-4)(2)(y^-4)=
(6)(y^-8)=
6/(y^8)
Answer:
Product of [tex](3y^{-4})(2y^{-4})=6y^{-8}[/tex]
Step-by-step explanation:
Given : Expression [tex](3y^{-4})(2y^{-4})[/tex]
To find : The product of the given expression?
Solution :
[tex](3y^{-4})(2y^{-4})[/tex]
Applying property of exponent, [tex]x^a\times x^b=x^{a+b}[/tex]
Comparing with given expression x=y , a=-4 and b=-4
[tex]=(3)\times(2)\times(y^{-4+(-4)})[/tex]
Multiply 3 and 2,
[tex]=6\times(y^{-8})[/tex]
[tex]=6y^{-8}[/tex]
Therefore, Product of [tex](3y^{-4})(2y^{-4})=6y^{-8}[/tex]