Respuesta :

so we have a 6 at the bottom, and the root is 3, so hmm how to take it out, simple enough, just let's get something to make the 6 a 6³, so it comes out of the root

so 

[tex]\bf \cfrac{2+\sqrt[3]{3}}{\sqrt[3]{6}}\cdot \cfrac{\sqrt[3]{6^2}}{\sqrt[3]{6^2}}\implies \cfrac{(2+\sqrt[3]{3})(\sqrt[3]{6^2})}{(\sqrt[3]{6})(\sqrt[3]{6^2})}\implies \cfrac{2\sqrt[3]{36}+\sqrt[3]{3}\cdot \sqrt[3]{36}}{\sqrt[3]{6^3}} \\\\\\ \cfrac{2\sqrt[3]{36}+\sqrt[3]{3\cdot 36}}{6}\implies \cfrac{2\sqrt[3]{36}+\sqrt[3]{108}}{6}\implies \cfrac{2\sqrt[3]{36}+\sqrt[3]{3^3\cdot 4}}{6} \\\\\\ \cfrac{2\sqrt[3]{36}+3\sqrt[3]{ 4}}{6}[/tex]