Respuesta :
ANSWER
The remainder is
[tex]124[/tex]
EXPLANATION
According to the remainder theorem, if
[tex]f(x) = {x}^{4} - 2 {x}^{3} + 5 {x}^{2} - 20x - 4[/tex]
is divided by
[tex](x - 4)[/tex]
then the remainder is given by
[tex]f(4)[/tex]
So we substitute
[tex]x = 4[/tex]
into the given function to get,
[tex]f(4) = {4}^{4} - 2 {(4)}^{3} + 5 {(4)}^{2} - 20(4) - 4[/tex]
We evaluate to get,
[tex]f(4) = 256- 2 {(64)} + 5 {(16)} - 20(4) - 4[/tex]
This will simplify to,
[tex]f(4) = 256- 128 + 80- 80 - 4[/tex]
[tex]f(4) = 124[/tex]
The remainder is
[tex]124[/tex]
EXPLANATION
According to the remainder theorem, if
[tex]f(x) = {x}^{4} - 2 {x}^{3} + 5 {x}^{2} - 20x - 4[/tex]
is divided by
[tex](x - 4)[/tex]
then the remainder is given by
[tex]f(4)[/tex]
So we substitute
[tex]x = 4[/tex]
into the given function to get,
[tex]f(4) = {4}^{4} - 2 {(4)}^{3} + 5 {(4)}^{2} - 20(4) - 4[/tex]
We evaluate to get,
[tex]f(4) = 256- 2 {(64)} + 5 {(16)} - 20(4) - 4[/tex]
This will simplify to,
[tex]f(4) = 256- 128 + 80- 80 - 4[/tex]
[tex]f(4) = 124[/tex]