Volume of a cone: V = 1/3 r2 h
Lateral Surface area of cone: A = r s, where s= slant height.

Find the lateral surface area of a cone whose base is a circle with a 5 cm radius and whose altitude is 10 cm.

Lateral Surface area (to the nearest cm2) = ____ cm2.

A) 262
B) 176
C) 157

Respuesta :

B176 is the lateral serface because its latARAL


Answer: B) 176

Step-by-step explanation:

Given: The radius of the base of circle of cone (r)= 5 cm

The altitude of the cone (h)= 10 cm

Now, the lateral surface area of the cone is given by :-

[tex]L.A.=\pi rl\\\\\Rightarrow\ L.A.=(3.14)(5)(\sqrt{r^2+h^2})\\\\\Rightarrow\ L.A.=(3.14)(5)(\sqrt{5^2+10^2})\\\\\Rightarrow\ L.A.=(3.14)(5)(\sqrt{125})\\\\\Rightarrow\ L.A.=175.531336234\approx176\ inches^2[/tex]

Hence, the Lateral Surface area (to the nearest [tex]cm^2[/tex]) =[tex]176\ in.^2[/tex]