What is the measure of ∠RST ?
Enter your answer in the box.

Answer:
[tex]{\angle}RST=100^{\circ}[/tex]
Step-by-step explanation:
Given: It is given that in triangle RST, [tex]{\angle}R=40^{\circ}[/tex]and [tex]{\angle}T=40^{\circ}[/tex].
To find: The measure of [tex]{\angle}RST[/tex].
Solution: It is given that in triangle RST, [tex]{\angle}R=40^{\circ}[/tex]and [tex]{\angle}T=40^{\circ}[/tex].
Using the angle sum property of triangles, we have
[tex]{\angle}SRT+{\angle}RTS+{\angle}RST=180^{\circ}[/tex]
Substituting the given values, we have
[tex]40^{\circ}+40^{\circ}+{\angle}RST=180^{\circ}[/tex]
[tex]80^{\circ}+{\angle}RST=180^{\circ}[/tex]
[tex]{\angle}RST=180^{\circ}-80^{\circ}[/tex]
[tex]{\angle}RST=100^{\circ}[/tex]
Hence, the measure of the [tex]{\angle}RST[/tex] is [tex]100^{\circ}[/tex].