Respuesta :
Using the remainder theorem, evaluating the function for k will be the same value as the remainder.
8(4^4) + 7(4^3) + 5(4^2) -5(4) + 35 =
2048 + 448 + 80 + - 20 + 35 =
2591
8(4^4) + 7(4^3) + 5(4^2) -5(4) + 35 =
2048 + 448 + 80 + - 20 + 35 =
2591
Answer:
the remainder is equal to [tex]2,591[/tex]
Step-by-step explanation:
we know that
The remainder theorem, states that if f(x) is a polynomial in x then the remainder on dividing f(x) by (x − k) is equal to f(k)
In this problem we have
[tex]f(x)=8x^{4}+7x^{3}+5x^{2} -5x+35[/tex]
the value of k is equal to [tex]k=4[/tex]
Find f(k)
[tex]f(4)=8(4)^{4}+7(4)^{3}+5(4)^{2} -5(4)+35[/tex]
[tex]f(4)=2,591[/tex]
therefore
the remainder is equal to [tex]2,591[/tex]