Respuesta :

we know that

An isosceles triangle has two equal sides and two equal angles

If the isosceles triangle is a right triangle

then

The measure of the angles are  [tex]45\°- 90\°- 45\°[/tex]

[tex]cos (45\°)=\frac{\sqrt{2}}{2}[/tex]

[tex]cos (45\°)=\frac{leg}{hypotenuse}[/tex]

so

[tex]\frac{leg}{hypotenuse}=\frac{\sqrt{2}}{2}[/tex]

we have

[tex]leg=15\sqrt{2}\ ft[/tex]

Substitute and solve for the hypotenuse

[tex]\frac{15\sqrt{2}}{hypotenuse}=\frac{\sqrt{2}}{2}\\ \\hypotenuse=2*15 \\ \\ hypotenuse=30\ ft[/tex]

therefore

the answer is

[tex]30\ feet[/tex]

Answer:

The hypotenuse will have a length of __30___feet.

Step-by-step explanation:

An isosceles right triangle:

It is a right triangle with two legs equal in length and has angles of  [tex]45^{\circ}-45^{\circ}-90^{\circ}[/tex]

In a  [tex]45^{\circ}-45^{\circ}-90^{\circ}[/tex] triangle,

the length of the hypotenuse is [tex]\sqrt{2}[/tex] times the length of a leg.

Given the statement:

If the legs of an isosceles right triangle have a length of 15√2 ft.

⇒Length of leg = 5√2 ft

then by definition we have;

[tex]\text{Length of hypotenuse} = \sqrt{2} \cdot 15\sqrt{2}[/tex]

Simplify:

[tex]\text{Length of hypotenuse} = 15 \cdot 2 = 30 ft[/tex]

Therefore, the hypotenuse will have a length of __30___feet.