y varies inversely with x. k, the constant of inverse variation, is 8.4. When y is 5.04, what is x? Round your answer to the nearest tenth, if necessary.

Respuesta :

[tex]\bf \qquad \textit{ inverse proportional variation}\\\\ \begin{array}{llllll} \textit{something}&&\textit{varies inversely to}&\textit{something else}\\ \quad \\ \textit{something}&=&\cfrac{{{\textit{some value}}}}{}&\cfrac{}{\textit{something else}}\\ \quad \\ y&=&\cfrac{{{\textit{k}}}}{}&\cfrac{}{x} \\ &&\boxed{y=\cfrac{{{ k}}}{x}} \end{array}[/tex]

[tex]\bf k=\textit{constant of inverse variation}\implies 8.4\implies \boxed{y=\cfrac{8.4}{x}}\\\\ -----------------------------\\\\ \textit{When y is 5.04, what is x?}\implies 5.04=\cfrac{8.4}{x}[/tex]

solve for "x"