Respuesta :

it is b, (3x+4)(3x+4) = 9x2+24x+16

Answer: Option 2 is correct (3x+4)(3x+4)

Explanation:

we have general form of quadratic equation [tex]ax^2+bx+c[/tex]

Given quadratic is  [tex]9x^2+24x+16[/tex]

We will use the formula for discriminant which is [tex]D=b^2-4ac[/tex]

On comparing the given quadratic equation with the general quadratic equation we get  a=9 , b=24,c=16

substituting the values in the formula for discriminant we will get

 [tex]24^2-4(9)(16)[/tex]=0

Now, to find x we have formula [tex]\frac{-b\pm\sqrt{D}} {2a}[/tex]

D=0 , b=24, c=16 substituting the values we will get

[tex]x=\frac{-24\pm0}{2*9} =\frac{-4}{3},\frac{-4}{3}[/tex]

factors are [tex](x+\frac{4}{3})(x+\frac{4}{3})= (3x+4)(3x+4)[/tex]