Respuesta :
Answer:
C. [tex](10x^2-4)-(7x^2+3)[/tex]
Step-by-step explanation:
In option A,
[tex](2x^2-11)-(x^2+4)= 2x^2 - 11 - x^2 - 4 = x^2 -15[/tex]
Since,
[tex](x^2-15)\neq (3x^2-7)[/tex]
⇒ Option A is incorrect.
In option B,
[tex](5x^2-6)-(2x^2-1)= 5x^2-6-2x^2+1 = 3x^2 -5[/tex]
Since,
[tex](3x^2-5)\neq (3x^2-7)[/tex]
⇒ Option B is incorrect.
In option C,
[tex](10x^2-4)-(7x^2+3)= 10x^2-4-7x^2-3 = 3x^2 -7[/tex]
⇒ Option C is correct.
In option D,
[tex](15x^2-8)-(18x^2+1)= 15x^2-8-18x^2-1= -3x^2 -9[/tex]
Since,
[tex](-3x^2 -9)\neq (3x^2-7)[/tex]
⇒ Option D is incorrect.