Which expression is equivalent to (3x^2-7)?

A. (2x^2-11)-(x^2+4)
B. (5x^2-6)-(2x^2-1)
C. (10x^2-4)-(7x^2+3)
D. (15x^2-8)-(18x^2+1)

Respuesta :

gmany

[tex]C.\ (10x^2-4)-(7x^2+3)=10x^2-4-7x^2-3=(10x^2-7x^2)+(-4-3)=3x^2-7[/tex]

Answer:

C. [tex](10x^2-4)-(7x^2+3)[/tex]

Step-by-step explanation:

In option A,

[tex](2x^2-11)-(x^2+4)= 2x^2 - 11 - x^2 - 4 = x^2 -15[/tex]

Since,

[tex](x^2-15)\neq (3x^2-7)[/tex]

Option A is incorrect.

In option B,

[tex](5x^2-6)-(2x^2-1)= 5x^2-6-2x^2+1 = 3x^2 -5[/tex]

Since,

[tex](3x^2-5)\neq (3x^2-7)[/tex]

Option B is incorrect.

In option C,

[tex](10x^2-4)-(7x^2+3)= 10x^2-4-7x^2-3 = 3x^2 -7[/tex]

Option C is correct.

In option D,

[tex](15x^2-8)-(18x^2+1)= 15x^2-8-18x^2-1= -3x^2 -9[/tex]

Since,

[tex](-3x^2 -9)\neq (3x^2-7)[/tex]

Option D is incorrect.