Respuesta :
Mean, μ=1500
Standard Deviation, σ=150
X=1750
Then
[tex]z-score= \frac{1750-1500}{150} [/tex]
[tex]z-score=1.7[/tex] (rounded to one decimal place)
Standard Deviation, σ=150
X=1750
Then
[tex]z-score= \frac{1750-1500}{150} [/tex]
[tex]z-score=1.7[/tex] (rounded to one decimal place)
Answer:
The z-score is 1.667. ( approx )
Step-by-step explanation:
In normal distribution,
The z-score or standard score of a score x is,
[tex]z=\frac{x-\mu}{\sigma}[/tex]
Where,
[tex]\mu[/tex] is mean,
[tex]\sigma[/tex] is standard deviation,
Here,
[tex]\mu = 1500[/tex]
[tex]\sigma = 150[/tex]
Hence, the z-score of 1750 points is,
[tex]z=\frac{1750-1500}{150}[/tex]
[tex]=\frac{250}{150}[/tex]
[tex]\approx 1.667[/tex]