Respuesta :
Factor to get
[tex] \frac{x(x-4)(x-1)(x-1)}{2(x^2+3x-42)} [/tex]
[tex] \frac{x(x-4)(x-1)(x-1)}{2(x^2+3x-42)} [/tex]
Answer with explanation:
[tex]\rightarrow\frac{x^2-16}{2x+8} \times \frac{x^3-2 x^2+x}{x^2+3 x-42}\\\\=\frac{(x-4)(x+4)}{2\times (x+4)} \times \frac{x \times (x^2-2 x+1)}{x^2+3 x-42}\\\\=\frac{x(x-4)(x-1)^2}{2\times (x^2+3 x-42)}\\\\\text{Used the Identity}}\\\\a^2-b^2=(a-b)(a+b)\\\\(a-b)^2=a^2-2 a b+b^2[/tex]