What is the linear function equation that best fits the data set?
the data set is (1.5,14)(1,12)(2,9)(1.5,8)(3,6)(4.5,4)(4,3)(4.5,0)
yˆ=−43x+9
yˆ=−43x+10
yˆ=3x+15
yˆ=−3x+15
PLEASE HELP

Respuesta :

To form an equation for a straight line, we need the value of gradient and the y-intercept

The formula to find gradient is [tex] \frac{S_{xy} }{ S_{xx} } [/tex]

[tex] S_{xy}= [/tex]∑[tex](xy)- \frac{(∑x)(∑y)}{n} [/tex]
[tex] S_{xy}= 111- \frac{(22)(56)}{8} [/tex]
[tex] S_{xy}= \frac{1232}{8}=-43[/tex]

[tex] S_{xx}= [/tex]∑[tex] x^{2} - \frac{∑x}{n} [/tex]
[tex] S_{xx}=75- \frac{22^{2}} {8} [/tex]
[tex] S_{xx}=14.5 [/tex]

[tex]m= \frac{S_{xy}}{S_{xx}}[/tex]
[tex]m= \frac{-43}{14.5}=-2.9[/tex]≈-3

where m is the gradient

to find c (y-intercept)
[tex]c=mean of y-(m)(mean of x)= \frac{56}{8} -(-3)( \frac{22}{8})=15.25 [/tex]≈15

Hence the equation of the straight line is [tex]y=-3x+15[/tex]

Answer:

D. y = -3x + 15

Step-by-step explanation:

I just took the test!!!