Respuesta :
To form an equation for a straight line, we need the value of gradient and the y-intercept
The formula to find gradient is [tex] \frac{S_{xy} }{ S_{xx} } [/tex]
[tex] S_{xy}= [/tex]∑[tex](xy)- \frac{(∑x)(∑y)}{n} [/tex]
[tex] S_{xy}= 111- \frac{(22)(56)}{8} [/tex]
[tex] S_{xy}= \frac{1232}{8}=-43[/tex]
[tex] S_{xx}= [/tex]∑[tex] x^{2} - \frac{∑x}{n} [/tex]
[tex] S_{xx}=75- \frac{22^{2}} {8} [/tex]
[tex] S_{xx}=14.5 [/tex]
[tex]m= \frac{S_{xy}}{S_{xx}}[/tex]
[tex]m= \frac{-43}{14.5}=-2.9[/tex]≈-3
where m is the gradient
to find c (y-intercept)
[tex]c=mean of y-(m)(mean of x)= \frac{56}{8} -(-3)( \frac{22}{8})=15.25 [/tex]≈15
Hence the equation of the straight line is [tex]y=-3x+15[/tex]
The formula to find gradient is [tex] \frac{S_{xy} }{ S_{xx} } [/tex]
[tex] S_{xy}= [/tex]∑[tex](xy)- \frac{(∑x)(∑y)}{n} [/tex]
[tex] S_{xy}= 111- \frac{(22)(56)}{8} [/tex]
[tex] S_{xy}= \frac{1232}{8}=-43[/tex]
[tex] S_{xx}= [/tex]∑[tex] x^{2} - \frac{∑x}{n} [/tex]
[tex] S_{xx}=75- \frac{22^{2}} {8} [/tex]
[tex] S_{xx}=14.5 [/tex]
[tex]m= \frac{S_{xy}}{S_{xx}}[/tex]
[tex]m= \frac{-43}{14.5}=-2.9[/tex]≈-3
where m is the gradient
to find c (y-intercept)
[tex]c=mean of y-(m)(mean of x)= \frac{56}{8} -(-3)( \frac{22}{8})=15.25 [/tex]≈15
Hence the equation of the straight line is [tex]y=-3x+15[/tex]
Answer:
D. y = -3x + 15
Step-by-step explanation:
I just took the test!!!